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ABSTRACT
 The objective of this work is to analyze the

performance of three first derivative optimization
methods (the gradient, conjugate gradient and
quasi Newton method) when applied in the
solution of seismic waveform inversion.
Important aspects as scaling, step length
calculation, preconditioning and model
parametrization are evaluated as well to define the
best numerical implementation for this
optimization based inversion. Examples involving
the seismic wave velocity inversion of vertically
inhomogeneous medium is set up to illustrate the
convergence properties of the selected methods.

INTRODUCTION
Seismic waveform inversion is a technique

designed to estimate petrophysical parameters.
The data space for this method is the  seismic data
itself, so it takes into account information from
amplitude, travel time and phase of the recorded
signal. It has high potential to resolve the
subsurface in great detail and is conceptually
superior to the conventional seismic processing
methods that are currently been used in the
industry. This methodology is an optimization-
based inversion that tries to obtain a model, which
adequately describes the data set. It is achieved by
the minimization of a cost or objective function
that measures, in a given norm, the distance
between calculated and observed data. This
technology received great contributions from
works from Lally, Tarantola and Mora who
derived general procedures to obtain the
derivatives of the cost function with respect to the
model parameters  [7, 9 and 11].

Since then, many nonlinear seismic waveform
inversion algorithms and examples of applications
have appeared in the exploration geophysical
literature, most of then are based on the gradient

and conjugate gradient methods. References to
quasi Newton implementations are very rare  [6]
and until now, there is not a common sense about
which of this classical first derivative
optimization methods is the best for this particular
application. Another important implementation
topic is the step length calculation. In
applications, it is usually done by one step,
simplified routines. The main reason for this is
the high computer cost for waveform inversion
that typically involves thousands of unknowns
(for 2-D case). However, the use of these routines
may lead to an unsatisfactory convergence.
Others alternatives to accelerate the method and
save memory are the use of preconditioning and
the representation of the unknowns parameters as
combination of some convenient basis functions,
what will be discussed along this work.

THE OPTIMIZATION APPROACH
The seismic waveform inversion method is

based in the minimization of a cost function,
which measures the distance among the calculated
and observed data.  This function may be defined
using the common L2, least square criteria. In a
continuos functional space it is given as:

Where Pc(xr,t:xs) is the field calculated at the
position xr at the time t, due to the presence of a
source at the position xs and Po is the observed
field. The parameter m(x) represents physical
characteristics of the medium as density, porosity
or P wave impedance. In the present work, we
will concentrate in the acoustic case, so Pc and Po
represents pressure, and will obey the following
equation:
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Which is valid for a constant density medium.
The velocity c(x) is the parameter to be estimated.
In seismic exploration, the field is known along
the earth surface. The source function  f  is also a
parameter to be estimated in practical situations
but here, it will be given. The gradient of S may
be obtained by the formula:

The function ψ is defined as:

Where δp is the residual, that is, the difference
between the calculated and observed seismic
wavefield: δp=Pc - Po. T is the final record time,
G is the acoustic Green’s  function and * means
convolution. The function ψ is required to obey
the following final conditions (see [12] for
details):

NUMERICAL IMPLEMENTATION
Some considerations of the numerical

implementation of nonlinear waveform inversion
algorithms will be done in this section. The first is
related to the choice of the type of first derivative
optimization technique. Conjugate gradient is
supposed to gives better result than the simple
gradient, without any significant increase of the
computations. However some results seems to
contradict it (see [3], for example). Quasi Newton
methods may converge faster but requires extra
memory for vector storage. Step length
calculations is also a topic that deserves attention.
The question here is the effectiveness of
approximate procedures commonly used to save

computations.  Other topics are related to scaling,
preconditioning, parametrization and numerical
solution of equation (1).

Discretizing the problem
 Practical applications demand the problem to

be solved in a discrete space for computations. A
fundamental step of its solution is the calculation
of the wavefield. If we think in a rectangular
mesh for the subsurface discretization, the method
of finite differences is a good option for this task.
Here the problem will be restrict to 2-D and the
following difference scheme will be used for
solution of equation (1):

Where x=m.h, z=n.h , t=l.dt and am,n=cm,ndt/  h.
The scheme is stable provided am,n<(3/8)1/2  [8].
The calculation of ψ may be done using the same
scheme, but at each receiver point xr we set a
source whose time function is the reversal of the
data residual δp. Each iteration of the waveform
inversion requires equation (1) to be solved many
times for the evaluation of the cost function,
gradient and step length calculations. So the
computational cost becomes very high if there are
many variables and parameters to be inverted in
the problem.

Gradient method and preconditioning
The gradient methods provides an iterative

solution that may be given by the formula:

Where  si is a descent direction, αi is the step
length and  Ai is a positive definite matrix, known
as the preconditioning matrix, that is used to
accelerate the convergence. In the classical
Gradient and Conjugate gradient this matrix is
keep constant along the iterations. In this work, it
is a diagonal matrix, which acts to compensate the
amplitude decay caused by geometrical spread. In
the quasi Newton approach, A is modified at each
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iteration in order to approximate the Hessian, or
it’s inverse. Here the quasi Newton method was
implemented according to the BFGS formula, due
to  Broyden, Fletcher, Goldfarb and Shanno
[1,2]. Although, this method is supposed to
achieve the fast convergence of Newton’s method
as A approximate the inverse Hessian, it requires
storage of, at least, a gradient and a direction
vector s after each iteration to do the actualization
of A. It becomes a serious difficult for large scale
applications. This problem may be partially
circumvented by the use of the limited memory
BFGS method [10].

Step length calculations
The step length may have a considerable

effect on the performance of the gradient
optimization method. The strategy adopted here is
to use a line search routine based on cubic
approximations for S. A reasonable minimum
point is found, only if it reaches the Wolf-Powell
conditions:

Condition I, exclude the right-hand extreme of the
search interval and condition II impose a
sufficient decrease on the slop. The precision of
the line search is controlled by the parameters ρ
and σ. Before the line search routine, it is
necessary to implement a bracket procedure to
find an interval that contains an acceptable point.
The rigorous routine described above requires
many evaluations of the cost function and its
gradient.  Simple procedures for fast evaluation of
the optimum step length may be derived, by one
step line search based on a quadratic
approximation for the objective function along the
search direction  (see [3] for example). These
procedures are usual in the implementation of
seismic waveform inversion algorithms. It saves a
lot of computation, but may lead to negligible
reduction of the cost function at each iteration. A
comparison among algorithms with rigorous and
approximate step length calculation is made in the
numerical test section.

Scaling
Another important practical aspect for

implementation of optimization algorithms is the

correct scaling of the variables. This is
fundamental to avoid work with very small or
very big numerical values, what may cause
truncation errors. Since the final result is not
supposed to be very far from the initial model, it
is possible to establish reasonable bounds for the
variables: (bk≥ck≥ak). Then the following scaling
procedure is adopted in this work:

So the scaled variable Ck will always belong
to the interval (1≥Ck≥-1). This procedure showed
to be very important for the conjugate gradient
method and fundamental to the quasi Newton.

Parametrization
The numerical solution of equation (1), by the

scheme (6), requires the discretization of the
subsurface in a set of nodal points, where the
velocity should be given. So, it seems to be
natural to use the present inversion method, to
update the velocity at each of these nodal points
used in the modeling step. However, this
procedures generates a lot of variables and leads
to non-uniqueness for the inverse problem, since
the grid size is normally smaller than the details
that we hope to reconstruct from the data. So it is
not necessary to use the nodal modeling
parameters as inversion parameters. This may be
defined as combination of some convenient basis
functions:

Where ai(zj) is one of the N basis function and
ni are the new parameters of the problem. The
gradient vector in the new parametrization is
calculated by the simple procedure:

Where ∂m/∂n is a matrix, whose elements are
cij=∂mj/∂ni.  In this work a block parametrization
was adopted, in this case ai are simple box
functions. This kind of parametrization is
convenient if we think that the earth is a 1-D
layered medium, where the velocity is constant at
each layer. Other kinds of parametrization as
splines, if ones want smooth results, may be
implemented using equation (10).
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NUMERICAL TESTS
Numerical tests are set up in order to check

the procedures described in the last sections and
the performance of the classical gradients
methods.  These tests are based in the inversion of
multichannel synthetic data (only one shot),
acquired over a layered medium (figure 1). This
data consists of a 48 traces separated by 24
meters, with 800 samples generated by a 0.0015
seconds sampling interval. An initial model is
necessary in order to initialize the iterative
minimization. This initial model is also shown in
figure (1), it preserves the tendency of the
increase of the velocity with depth present in the
first five layers. The model was discretized by
170 velocity samples, with 8 meters interval. In
the first set of tests, parametrization was not used,
so each one of these sample is an inversion
variable to be estimated.

Figure 1- Test model and the initial model used in
the iterative minimization algorithms.

 The first test shows the advantage of the use
of preconditioning. Figure (2) shows the
convergence histories of the gradient method
implemented without and with preconditioning to
compensate amplitude decay caused by
geometrical spreading. This simple procedure is
fundamental to increase the convergence speed.

Figure 2 – Convergence of the Gradient method
and preconditioned Gradient method.

The second test compares rigorous and
approximated step length strategies.  For the
rigorous one, we adopted ρ=0.001 and σ=0.1   ,

these values provide a good precision in the line
search routine. The approximated strategy
consists of only one step based on a quadratic
interpolation for the objective function along the
search direction. It is clear in figure (3) that this
approximate step length routine results in a very
slow convergence when compared to the more
rigorous procedure.

Figure 3 – Convergence of the preconditioned
Gradient method with rigorous (solid line) and
approximate step length calculations.

Some implementation details of the gradient
algorithms should be explained before its
comparison. The Polak-Ribiere formula (see [4]
for example) was used for the conjugate Gradient
method, with preconditioning. The quasi Newton
method needs an initial approximation for the
inverse Hessian matrix A0 . It is usual to take the
identity matrix for this, but here the same
preconditioning matrix described early will be
used for this approximation since it showed to be
a good practice along the numerical experiments.
The convergence history of the three methods is
depicted in figure (4).

Figure 4 – Convergence history of the
preconditioned Gradient, preconditioned Conju-
gate Gradient and BFGS quasi Newton Methods.

 It is interesting to see that the preconditioned
Conjugate Gradient method did not improve the
results when compared to the simple
preconditioned Gradient. These methods did not
make any considerable progress after iteration 40.
The BFGS quasi Newton, instead, continued to
make consistent progress until when it was tested
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in iteration 150, when the normalized error
achieved 10-6.   The final results obtained by the
Gradient and Conjugated Gradient methods are
shown in figure (5).

Figure 5 – Final results of the preconditioned
Gradient and conjugate Gradient method.

 These results, in general, are in good
agreement with the true model, although they fail
after layer 5. This occurs because the inversion in
the velocity growth tendency given by the initial
models is not preserved in layer 6. Reflection
seismic waveform inversion using gradients
methods, is known to be very sensitive to local
minimums, especially if low frequencies are
absent of the data [5].  So it depends on an
accurate initial model, that contains at least the
smooth character of the true model, in order to
give a good result. However, the BFGS quasi
Newton method seems to be more robust then the
Gradient and Conjugate Gradient. Its velocity
reconstruction is very good for all layers.  The
inversion process recovers the high frequency
characteristics of the model first, so the interfaces
are the first feature that appears in the solution.
The convergence velocity decreases in the
reconstruction of the smooth (low frequency)
features of the model.  Some oscillation around
the interfaces may also be saw in the solutions,
this resembles the Gibbs Phenomenon from
Fourier analysis.

Figure 6 – Final result obtained by the BFGS
quasi Newton Method.

The last numerical testes show the advantage of
the use of the parametrization. Figure (7) shows

that only 35 iterations of the BFGS algorithm
using block parametrization are sufficient to
recover the main features of the model. For this
test, each block has 24 meter, so the number of
inversion variables was reduced from 170 to 56.

Figure 7 – Result of 35 iterations of the BFGS
quasi Newton method, using block parame-
trization.

The advantage of this type of parametrization for
layered medium becomes more evident in the
numerical test shown in figure (8). It is a
reconstruction of model with only one thin layer.
For this example, a  constant velocity medium
(c=2000 m/s), was taken as initial model. The
inversion procedure using the modeling variables
as inversion variables had to deal with 90
variables, this number was reduced to 18 in the
block parametrization scheme. After 20 iterations,
inversion using point parametrization is far from
the real model, while the result obtained using
blocks gave an almost perfect result. Block
parametrization also tends to eliminate the
oscillations around interfaces present in the
solutions obtained using point parametrization.

Figure 8 – Reconstruction of a thin layer model
using 20 iteration of the point and block
parametrization .

CONCLUSIONS
The BFGS quasi Newton method seems to be

the better first derivative optimization method for
the non-linear seismic waveform inversion
problem. For this method, the preconditioning
matrix is a better option for the initial inverse
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Hessian then the Identity matrix. Approximate
routines for step length calculations, although
commonly used in practical applications, should
be avoided due to the very slow convergence
achieved due to under estimate of the steps.
Rigorous step length calculation is preferable
even it becomes the heaviest computational task
of the algorithm.  Parametrization by a
combination of orthogonal or interpolating
functions is a better option then to use the model
variables as the inversion variables. The block
parametrization, using simple box functions
adopted in this work, showed to be very
convenient for the layered models used as
examples. This procedures acts to regularize the
inversion, decreasing the number of variables and
iterations necessary to achieve a good
reconstruction.
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